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An analytic description for traveling waves in a one-dimensional reaction-diffusion system with one activa-
tor and two inhibitors and with equal diffusion constants is developed using a piecewise linear approximation
for the nonlinear activator reaction term. The case of front waves is examined in more detail, the monotonic
and oscillating fronts being separately considered. The corresponding wave profiles are constructed, and the
speed equation is obtained and discussed. It is found that the fronts in the three-component model propagate
faster than the fronts in the two-component system. The front interaction is studied using numerical calcula-
tions. The results show that at head-on collisions two oscillating fronts produce a wavy domain, which spreads
in space with time.
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I. PHYSICAL MOTIVATION

Reaction-diffusion �RD� equations generate spatial pat-
terns in a variety of nonequilibrium systems �1–4�. Most of
these systems is related to excitable media, where the wave
propagation and interaction form spatial domains of different
structure. Their features are revealed through analysis of the
one-dimensional excitation waves as fronts and pulses. Such
localized stationary and traveling solitary objects are basic
fundamentals in many formation mechanisms �1�. The same
structures are observed in chemical systems �2,3� and semi-
conductors �5�. Electrical pulses transmit the information in
nervous systems of living objects �1�. Based on the work of
Hodgkin and Huxley �6� nerve pulse conveying has been
modeled by electrical transmission lines �7�. In this model
the experimentally observed pulse propagation on the elec-
trical system corresponds to localized solitary traveling solu-
tions of a simple nonlinear two-component RD system of
activator-inhibitor type with a cubic activator reaction term,
the FitzHugh-Nagumo �7,8� system. Experimentally local-
ized solitary objects are observed in planar gas-discharge
systems with high Ohmic barrier as electrical current fila-
ments �9�. A description of such patterns and more complex
structures is given in Refs. �9,10�.

Localized solitary objects in two-dimensional systems
have been established as solutions of a three-component RD
model �11�. These solutions were obtained by numerical in-
tegration in the following set �11�:

�u

�t
= f�u� − v − kww + k0 + Du

�2u

�x2 ,

�v
�v
�t

= u − v + Dv
�2v
�x2 ,

�w
�w

�t
= u − w + Dw

�2w

�x2 , �1�

with a cubiclike nonlinear function f�u��u−u3 and
positive parameters �v,w and kw,0. This is the RD system

with one activator u and two inhibitors v ,w. The inhibitors
differ in their time �v,w and diffusion Dv,w length scales.
Under the action of an additional second inhibitor the local-
ized solitary objects traveling on two-dimensional domains
�spots� can be stabilized �11,12�, because whereas the
first inhibitor couples the dynamics of the leading front
to the following back front �13,14�, the second inhibitor sta-
bilizes the shape of the wall of the activator in the directions
perpendicular to the motion �lateral directions� of the spot
�12�.

From the point of view of gas-discharge physics, the
activator is the current density in the gas, the first inhibitor
is the voltage drop at a high Ohmic layer, the second
inhibitor is related to temperature or another effective high
Ohmic layer, f�u� is the voltage current characteristic of gas,
�v,w are the dielectric relaxation time, k0 is the applied
voltage, and kw is the strength of influence of inhibitor on
�u /�t �10�.

An analytic treatment of RD equations is possible
when the nonlinear reaction term is approximated by a piece-
wise linear function. This approach, well known in the
literature since 1970 �15�, allows us to obtain analytic solu-
tions for the propagating waves. The method has more
general applicability and is often the only way to investigate
some nonlinear problems analytically in an approximate
fashion �16�. In the last decade, piecewise linear models
have been widely employed to use the translational invari-
ance of equations as a speed selection mechanism �17,18�,
to study the effect of transport memory �19–21� and the
wave propagation in discrete �22,23� and inhomogeneous
�24� media, and to consider a forcing influence �25�. In
most papers related to RD equations, one-component
�15,17,19,20,25–27� and two-component �13,18,28–32�
systems are investigated so that, to the best of our knowl-
edge, before the present study, no fully analytic solutions for
the traveling waves in the three-component RD systems were
available. Thus, the main problem statement for present work
is the analytic description of fronts in the piecewise linear
system.
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II. FACTORIZATION OF THE CHARACTERISTIC
EQUATION

The starting position is a one-dimensional three-
component RD system with one activator u�x , t� and two
inhibitors v�x , t� and w�x , t� �10–12�,

�u

�t
= f�u� − v − w + Du

�2u

�x2 ,

�v
�t

= �u − �v + Dv
�2v
�x2 ,

�w

�t
= �*u − �*w + Dw

�2w

�x2 , �2�

with steplike initial conditions

u�x,0� = u0��x�, v�x,0� = v0��x�, w�x,0� = w0��x� ,

�3�

where ��x�=2��x−x0�−1 and u0, v0, w0, and x0 are constant.
These initial conditions describe a localized perturbation at
x=x0 in the form of a front solution of steplike shape.

In Eq. �2� the cubic activator reaction term f�u��u−u3 is
approximated by a piecewise linear function f�u�=−�u−1
+2��u��−�u�1, where ��u� is the Heaviside step function;
positive parameters �, �*, �, and �* represent the ratios
of the time scales on which u, v, and w vary. In contrast
to the well-known two-component Rinzel-Keller model �33�,
in which the slope of pieces �=1, in presented model
one can change this positive parameter, which allows one
to find the exact solutions. In present paper, the consideration
is restricted to the case of equal diffusion constants
Du=Dv=Dw=1. In the situation with different diffusion con-
stants the system is exactly solvable for the stationary case
when �u /�t=�v /�t=�w /�t=0.

The inhibitors are coupled in the model by the activator
equation. This coupling becomes more visible when a new
variable v̂=v+w is introduced. Then summarizing of the in-
hibitor equations the model system �with equal diffusion
constants� reads

�u

�t
= f�u� − v̂ +

�2u

�x2 ,

�v̂
�t

= �� + �*�u − �v̂ − ��* − ��w +
�2v̂
�x2 ,

�w

�t
= �*u − �*w +

�2w

�x2 . �4�

When �=�* the first and second equations present an iso-
lated two-component system. Thus, to obtain new nontrivial
�related to the two-component model� results we must con-
sider the case ���*.

Introducing the traveling frame coordinate �=x−ct,
where c is the wave velocity, Eq. �2� can be rewritten for the
propagating solutions u���, v���, and w��� as

d2u

d�2 + c
du

d�
− �u − v − w � 1 = 0,

d2v
d�2 + c

dv
d�

+ �u − �v = 0,

d2w

d�2 + c
dw

d�
+ �*u − �*w = 0. �5�

The method of finding the traveling-wave solutions is very
simple: thanks to the piecewise linear character of the rate
function f�u�, the solution for each piece satisfies a linear
equation. The one-piece solution may then be expressed as a
superposition of six exponentials,

u��� = �
n=1

6

Ane	n� + ū, v��� = �
n=1

6

Bne	n� + v̄ ,

w��� = �
n=1

6

Bn
*e	n� + w̄ , �6�

where An, Bn, and Bn
* are integration constants to be deter-

mined in each of the regions u
0 and u�0; the parameters
ū , v̄ , w̄=const represent the coordinates of the fixed points.
Inserting Eqs. �6� into Eqs. �5� and collecting the terms pro-
portional to e	n�, we obtain the matrix equation GH=0 with

G = �� − � − 1 − 1

� � − � 0

�* 0 � − �*	, H = � A

B

B*	 . �7�

Here the notation �=	n
2+c	n is introduced. The determinant

of the matrix G is equal to zero when

�� − ���� − ���� − �*� + �*�� − �� + ��� − �*� = 0. �8�

This cubic equation may be easily factorized for some values
of the parameter �: if it is chosen as

� =
��* + �*�

� + �* , �9�

then �*��−��+���−�*�= ��+�*���−�� and Eq. �8� be-
comes

�� − ����� − ���� − �*� + � + �*� = 0, �10�

so that its roots read

�0 = �, �1,2 =
� + �*

2
±
�� − �*�2

4
− � − �*. �11�

Hence the eigenvalues

	1,2 = − c/2 ± 
c2/4 + �0 � − c/2 ± 0,

	3,4 = − c/2 ± 
c2/4 + �1 � − c/2 ± 1,

	5,6 = − c/2 ± 
c2/4 + �2 � − c/2 ± 2; �12�

the integration constants Bn and Bn
* can be expressed as
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B1,2 = b0A1,2, B3,4 = b1A3,4, B5,6 = b2A5,6,

B1,2
* = − b0A1,2, B3,4

* = b1
*A3,4, B5,6

* = b2
*A5,6 �13�

with

bm =
�

� − �m
, bm

* =
�*

�* − �m
, m = 0,1,2. �14�

Thus, the model contains in fact four parameter �, �, �*, and
�*; the � parameter is just their combination determined by
Eq. �9�. All four parameters present the ratios between the
time scales associated with the two field pairs, u /v and u /w.
When �=� for the two-component model is chosen �34� the
general case is modelled by some other constants. In present
paper two additional time scales � and �* are also introduced
for generality. The physical meaning of the choices and re-
strictions on the parameters are related to the context of ex-
citable media, where � ,��1. As follows from the general
theory of excitation waves �35� dissipative structures �in par-
ticular, static, pulsating, and traveling waves� may in prin-
ciple coexist when the system parameters lie between some
narrow regions, in particular when 0
��1 and 0
��1.
In presented paper the typical values � ,��0.1 are chosen.

III. DESCRIPTION OF THE FRONTS

In this section one specific type of the traveling-wave so-
lutions, the front solution, is examined in more detail. The
fronts present two-piece waves connecting two different
fixed points at �→−� and �→ +�, respectively.

A. Monotonic fronts

Since the constants �, �, �*, �*, and � are positive, the
eigenvalues 	1,3,5�0 and 	2,4,6
0. Here we consider the
case when ��−�*�2 /4��+�*. When ��−�*�2 /4
�+�* the
eigenvalues 	3–6 and constants B3–6 become imaginary and
the solutions u���, v���, and w��� contain cosine and sine
terms. This situation will be considered later.

Taking into account the signs of 	n Eqs. �12� the construc-
tion of the fronts reads

u1��� = A1e	1� + A3e	3� + A5e	5� − s, � � 0,

u2��� = A2e	2� + A4e	4� + A6e	6� + s, � � 0,

v1��� = B1e	1� + B3e	3� + B5e	5� − r, � � 0,

v2��� = B2e	2� + B4e	4� + B6e	6� + r, � � 0,

w1��� = B1
*e	1� + B3

*e	3� + B5
*e	5� − r*, � � 0,

w2��� = B2
*e	2� + B4

*e	4� + B6
*e	6� + r*, � � 0, �15�

where

s = 1/�� + �/� + �*/�*�, r = ��/��s, r* = ��*/�*�s
�16�

are the coordinates of the fixed points. Both parts of these
solutions are patched together using the matching conditions

for functions and their derivatives at �=0; i.e., there are six
equations for u, v, w, du /d�, dv /d�, and dw /d�, the seventh
equation having its origin in u��=0�=0. Thus, we have

A1 + A3 + A5 − s = A2 + A4 + A6 + s ,

A1	1 + A3	3 + A5	5 = A2	2 + A4	4 + A6	6,

A1 + A3 + A5 − s = 0,

B1 + B3 + B5 − r = B2 + B4 + B6 + r ,

B1	1 + B3	3 + B5	5 = B2	2 + B4	4 + B6	6,

B1
* + B3

* + B5
* − r* = B2

* + B4
* + B6

* + r*,

B1
*	1 + B3

*	3 + B5
*	5 = B2

*	2 + B4
*	4 + B6

*	6. �17�

From these seven equations it is easy to obtain after simple
mathematics six expressions for the An constants and the
speed equation. The results are

A1 = s +
q2

b̂1

	4 −
q1

b̂2

	6,

A2 = − s +
q2

b̂1

	3 −
q1

b̂2

	5,

A3 = −
q2

b̂1

	4,

A4 = −
q2

b̂1

	3,

A5 =
q1

b̂2

	6,

A6 =
q1

b̂2

	5, �18�

q1 = �b1 + b1
*��r − b0s� + �b0 − b1��r + r*� ,

q2 = �b2 + b2
*��r − b0s� + �b0 − b2��r + r*� ,

b̂ = �b1 + b1
*��b0 − b2� + �b2 + b2

*��b1 − b0�; �19�

the speed equation reads

c��q1 − q2 + sb̂�12 − 0�q11 − q22�� = 0. �20�

From the speed equation it follows that there exists a trivial
solution c=0, a stationary front. Other solutions describe two
counterpropagating fronts with positive and negative veloci-
ties because Eq. �20� is symmetrical under the transformation
c→−c due to m

2 �c2, m=0,1 ,2. Since q1,2�s, all solutions
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are independent of variations of the fixed-point coordinates s,
r, and r*.

An example of the front profiles u=u���, v=v���, and
w=w��� for typical �with the exception of �=1, this value
is chosen only for illustrative purposes to show the
monotonic fronts; otherwise, the front becomes oscillatory
�see the next section, Sec. III B�� for excitable media values
��=�*=�*=0.1� of the time-scale parameters as illustrated in
Fig. 1. As expected, the ratio of the time scales reflects the
difference between the front profiles of activator and inhibi-
tor so that the u and w profiles resemble to the corresponding
�activator and inhibitor, respectively� front curves in the two-
component system �34�, whereas the v profile repeats the u
wave on a reduced scale at �
�. When �→� the v curve
grows and tends to the u profile so that for ��� the v front
is larger than the u wave.

The fronts displayed in Fig. 1 propagate with negative
velocities—i.e., from the right to left side in Fig. 1. However,
it has been found that there also exists fronts with zero and
positive velocities at the same values of the model param-

eters. This fact can be generalized to a speed diagram. This
diagram �Fig. 2� is derived using the speed equation �20� for
fixed � �Fig. 2�a�� or � �Fig. 2�b��. The speed curve has the
trivial solution c=0 in addition to the two symmetric
branches which bifurcate at some critical values of the varied
parameter. Note the qualitative similarity with the nonequi-
librium Ising-Bloch bifurcation found in the two-component
system �34,36�. The difference is quantitative: the bifurcation
point in the two-component system occurs at �=�
0.4 for
positive �, as follows for �cr

− in Eq. �3.4� and Fig. 3 in Ref.
�36�, whereas the bifurcation in the three-component model
appears at the nontypical �for excitable media� values of �
and �.

B. Oscillating fronts

Special consideration must be given to waves with oscil-
lating tails. Traveling waves with spatial oscillations in pro-
files were described in different RD systems �20,23,36�. In
the present research, as noted above in Sec. III A, when
��−�*�2 /4
�+�* the eigenvalues 	3–6 are imaginary due to

�1,2 =
� + �*

2
± i
� + �* −

�� − �*�2

4
�

� + �*

2
± ip,

i2 = − 1, �21�

i.e.,

	3,4 = −
c

2
±
c2

4
+

� + �*

2
+ ip = −

c

2
± y ± iz ,

	5,6 = −
c

2
±
c2

4
+

� + �*

2
− ip = −

c

2
± y � iz , �22�

where

y =
1

2
�
c�

2 + p2 + c��, z =
1

2
�
c�

2 + p2 − c��,

c� =
c2

4
+

� + �*

2
�23�

are positive quantities and y�c /2 so that the real parts of the
parameters 	3,5 are positive and the real parts of 	4,6 are
negative. These expressions are similar to the case of the
two-component system �36�. Hence the front solutions read

u1��� = A1e	1� + e�−c/2+y���A3 cos�z�� + A5 sin�z��� − s,

� � 0,

u2��� = A2e	2� + e�−c/2−y���A4 cos�z�� + A6 sin�z��� + s,

� � 0,

v1��� = B1e	1� + e�−c/2+y���B3 cos�z�� + B5 sin�z��� − r,

� � 0,

FIG. 1. Front profiles u=u���, v=v���, and w=w��� for
�=�*=�*=0.1 and �=1. The value of the front speed is c�
−1.05.

FIG. 2. Speed diagrams c=c�� ,�� for fixed �a� �=10 and �b�
�=0.1. The values of the time-scale parameters for the second in-
hibitor are fixed at �*=�*=0.1.

E. P. ZEMSKOV PHYSICAL REVIEW E 73, 046127 �2006�

046127-4



v2��� = B2e	2� + e�−c/2−y���B4 cos�z�� + B6 sin�z��� + r,

� � 0,

w1��� = B1
*e	1� + e�−c/2+y���B3

* cos�z�� + B5
* sin�z��� − r*,

� � 0,

w2��� = B2
*e	2� + e�−c/2−y���B4

* cos�z�� + B6
* sin�z��� + r*,

�24�

� � 0.

Here Bn and Bn
* constants are functions of the An constants:

B3,5 =
�

� + �*�� − �*

2
A3,5 ± pA5,3 ,

B4,6 =
�

� + �*�� − �*

2
A4,6 � pA6,4 ,

B3,5
* =

�*

� + �*�−
� − �*

2
A3,5 ± pA5,3 ,

B4,6
* =

�*

� + �*�−
� − �*

2
A4,6 � pA6,4 , �25�

B1,2 and B1,2
* constants being determined by Eq. �13�. The An

constants and the front speed c are derived from the match-
ing procedure as was done in the case of monotonic fronts.
The front profiles obtained, u ,v ,w���, are shown in Fig. 3�a�.
For simplicity, the parameters of the inhibitor reaction func-
tions are chosen as �=� and �*=�*. Since the situation with
���* is considered, the time scales are set to ���* for the
sake of definiteness so that the v and w inhibitors are strong
and weak, respectively.

It is instructive to compare here the front behavior in the
three-component model with fronts in the two-component
systems with the same parameter values—i.e., with 2 two-
component systems, where the first one is with strong and
the second one is with weak inhibitors, separately. These
models are described by following equations:

�u

�t
= f�u� − ṽ +

�2u

�x2 ,

�ṽ
�t

= �̃�u − ṽ� +
�2ṽ
�x2 , �26�

with ṽ=v, �̃=� and ṽ=w, �̃=�* for the models with strong
and weak inhibitors, respectively. The piecewise linear func-
tion f�u� is the same as in Eq. �2�. Exact analytic solutions
for monotonic and oscillating fronts in the activator-inhibitor
system of this type were obtained earlier �36�.

The comparison of the three- and two-component cases is
presented graphically in Fig. 3. Results for the models with
strong and weak inhibitors are shown in Figs. 3�b� and 3�c�,
respectively. It can be seen that the front profiles in the three-

component system �3-fronts� differ quantitatively from the
fronts in the two-component systems �2-fronts�. Moreover,
the 3-front is not a superposition of both 2-fronts. It is re-
markable that the speed value of the 3-front is larger than
any 2-front velocity. This fact seems unexpected, but may be
explained as follows. It is known �10,12� that the second
inhibitor is introduced to stabilize two-dimensional domains.
In presented research all diffusion constants are equal. There-
fore both inhibitors couple the dynamics of the front and
back with similar effect. Hence the pattern is localized better
with clearly delineated boundary �less smeared� than the do-
main for the model with one inhibitor; i.e., the shape be-
comes steeper. And the steep wave propagates faster than the
sloping one. For the fronts depicted in Fig. 3 this means that
the wave with more pronounced oscillations �a� travels faster
than the waves with slightly oscillating tails �b�, �c�.

IV. FRONT INTERACTION

Further properties of fronts are determined here using nu-
merical calculations for three- and two-component systems.

FIG. 3. Profiles u=u���, v=v���, and w=w��� for fronts �a�
in the three-component system with �=�=0.2 and �*=�*=0.1 and
in the two-component systems with �b� strong inhibitor, where
�=�=0.2 and with �c� weak inhibitor, where �*=�*=0.1. The
values of the front speed are �a� c�−1.77, �b� c�−0.93, and �c�
c�−1.17. The value of � is the same for all three cases.
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These properties are related to the nonlinear dynamics of the
front interaction, and therefore it is difficult to describe them
analytically �37�. To study the interaction dynamics an equa-
tion of motion for a pair of colliding waves was derived by
the interfacial approach �38�. In the present research the
head-on collision effect of the interacting fronts has come
about through the appropriate choice of initial conditions and
the nonsymmetric activator reaction function f�u�=−�u−1
+2��u−u0� with u0=0.1; two square steps present the front
and back for the initial data.

In Fig. 4 an example of the front collisions is shown. For
the two-component system the colliding fronts annihilate
�Fig. 4�b��, whereas for the three-component model they pro-
duce a wavy pattern �Fig. 4�a�� that spreads in an oscillatory
manner. This pattern is formed by the repetition of two coun-
terpropagating waves and is initiated by the collision of os-
cillating tails as if they are elastic objects even in dissipative

systems. Colliding traveling waves in the three-component
system with one activator and two inhibitors are repulsive
near a bifurcation point; in fact, they scatter during collisions
�39�. This phenomenon is similar to the periodic wave-train
generation in oscillatory RD equations �40�. However, in the
present system the bistable dynamics is realized and hence
the following conclusion can be reached. The origin of this
effect is due to the intersection of two features: the second
inhibitor and the oscillating front. When there is no second
inhibitor �i.e., in the case of the two-component system� or
otherwise when the front in the three-component system is
monotonic, the colliding front and back annihilate. This is
valid for the two-component system with any �strong or
weak� inhibitor.

V. SUMMARY

The exact analytic solutions for traveling waves in the
three-component reaction-diffusion system of the activator-
inhibitor type were derived. The propagating fronts were ex-
plicitly written and the integration constants were found
from a set of transcendental equations, which were com-
pactly solved within any power of the smallness of the time-
scale parameters. Two type of fronts, monotonic and oscil-
lating, were considered and their speeds calculated. It was
found that the front in the three-component model propa-
gates faster than the front in the two-component system. The
front interaction was investigated using numerical calcula-
tions. These studies showed that during collisions of the os-
cillating fronts a wavy pattern was initiated. The pattern is
formed by the repetition of two counterpropagating waves
and spreads with time and resembles the periodic wave train
due to spatial oscillations. The wavy domain occurs only for
colliding oscillatory fronts in the three-component system.

In the present research both analytic and numerical meth-
ods were used for studies of the problem of front propagation
and interaction in the reaction-diffusion system. The model
with inverted N type of activator reaction function was ap-
plied to the cubic nonlinearity. However, the piecewise linear
approximation can be made for systems with more compli-
cated nonlinear reaction terms �26�, leading to a generaliza-
tion to multistable cases �41�, which may be considered in
the context of the above-described approach.
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